Аксиомы стереометрии и планиметрии ПОДГОТОВИЛИ УЧЕНИЦЫ Х А КЛАССА ЗАЦЕПИНА ЕКАТЕРИНА ПА доклад по теме Математика

Доклад раскрывает тему "Аксиомы стереометрии и планиметрии ПОДГОТОВИЛИ УЧЕНИЦЫ Х А КЛАССА ЗАЦЕПИНА ЕКАТЕРИНА ПА".
Презентация поможет подготовится к предмету Математика, может быть полезна как ученикам и студентам, так и преподавателям.
Материал представлен на 20 страницах, оформлен в виде презентации, доступен для скачивания и просмотра онлайн.

Навигация по документу

Страница №1
Аксиомы стереометрии и планиметрии ПОДГОТОВИЛИ: УЧЕНИЦЫ Х «А» КЛАССА ЗАЦЕПИНА ЕКАТЕРИНА; ПАВЛОВА ЮЛИЯ.
Страница №2
Аксиомы стереометрии.
Аксиомы стереометрии.
Страница №3
Аксиома 1(С1):
 Аксиома 1(С1):
   Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.
Аксиома 1(С1): Аксиома 1(С1): Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.
Страница №4
Аксиома 2(С2):
 Аксиома 2(С2):
   Если две различные плоскости имеют общую точку, то они пересекаются по одной прямой, проходящей через эту точку.
Аксиома 2(С2): Аксиома 2(С2): Если две различные плоскости имеют общую точку, то они пересекаются по одной прямой, проходящей через эту точку.
Страница №5
Аксиома 3(С3):
 Аксиома 3(С3):
    Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.
Аксиома 3(С3): Аксиома 3(С3): Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.
Страница №6
Аксиомы планиметрии.
Аксиомы планиметрии.
Страница №7
Аксиома I:
 Аксиома I:
    Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. 
Через любые две точки можно провести прямую, и только одну.
Аксиома I: Аксиома I: Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну.
Страница №8
Аксиома II:
 Аксиома II:
Из трёх точек на прямой одна и только одна лежит между двумя другими.
Аксиома II: Аксиома II: Из трёх точек на прямой одна и только одна лежит между двумя другими.
Страница №9
Аксиома III:
 Аксиома III:
    Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
Аксиома III: Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
Страница №10
Аксиома III:
 Аксиома III:
    Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
Аксиома III: Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
Страница №11
Аксиома III:
 Аксиома III:
    Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
Аксиома III: Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
Страница №12
Аксиома IV:
 Аксиома IV:
Прямая, принадлежащая плоскости, разбивает эту плоскость на две полуплоскости: β и φ
Аксиома IV: Аксиома IV: Прямая, принадлежащая плоскости, разбивает эту плоскость на две полуплоскости: β и φ
Страница №13
Аксиома V:
 Аксиома V:
Каждый угол имеет определённую градусную меру, большую нуля. Развёрнутый угол равен 180°. Градусная мера угла равна сумме, градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
Аксиома V: Аксиома V: Каждый угол имеет определённую градусную меру, большую нуля. Развёрнутый угол равен 180°. Градусная мера угла равна сумме, градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
Страница №14
Аксиома VI:
 Аксиома VI:
На любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один.
Аксиома VI: Аксиома VI: На любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один.
Страница №15
Аксиома VII:
 Аксиома VII:
От полупрямой на содержащей её плоскости в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один.            
φ = 45°< 180°
Аксиома VII: Аксиома VII: От полупрямой на содержащей её плоскости в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один. φ = 45°< 180°
Страница №16
Аксиома VIII:
 Аксиома VIII:
Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости.
Аксиома VIII: Аксиома VIII: Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости.
Страница №17
Аксиома IX:
 Аксиома IX:
На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной.
Аксиома IX: Аксиома IX: На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной.
Страница №18
Аксиома 1(С1):
  Аксиома 1(С1):
   Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.








        А   α , В   α
Аксиома 1(С1): Аксиома 1(С1): Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. А α , В α
Страница №19
Аксиома 2(С2):
 Аксиома 2(С2):
Если две различные плоскости имеют общую точку, то они пересекаются по одной прямой, проходящей через эту точку.
Аксиома 2(С2): Аксиома 2(С2): Если две различные плоскости имеют общую точку, то они пересекаются по одной прямой, проходящей через эту точку.
Страница №20
Аксиома 3(С3):
Аксиома 3(С3):
    Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.
Аксиома 3(С3): Аксиома 3(С3): Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.