ДНК Днк – Дезоксирибонуклеиновая кислота доклад по теме Биология

Доклад раскрывает тему "ДНК Днк – Дезоксирибонуклеиновая кислота ".
Презентация поможет подготовится к предмету Биология, может быть полезна как ученикам и студентам, так и преподавателям.
Материал представлен на 25 страницах, оформлен в виде презентации, доступен для скачивания и просмотра онлайн.

Навигация по документу

Страница №1
ДНК Днк – Дезоксирибонуклеиновая кислота.
Страница №2
Дезоксирибонуклеиновая кислота
ДНК –биологический полимер, состоящий из двух спирально закрученных цепочек.
Дезоксирибонуклеиновая кислота ДНК –биологический полимер, состоящий из двух спирально закрученных цепочек.
Страница №3
История открытия.
В 1869 г. Фридрих Мишер, швейцарский врач биохимик, выделил нуклеиновые кислоты из ядер клеток гноя. Эти клетки содержали фосфоорганическое вещество, которое Мишер назвал «нуклеином».
История открытия. В 1869 г. Фридрих Мишер, швейцарский врач биохимик, выделил нуклеиновые кислоты из ядер клеток гноя. Эти клетки содержали фосфоорганическое вещество, которое Мишер назвал «нуклеином».
Страница №4
История открытия.
Альтман обнаружил ортофосфорную кислоту в составе аминокислот. Именно ее он поначалу называл нуклеиновой кислотой.
История открытия. Альтман обнаружил ортофосфорную кислоту в составе аминокислот. Именно ее он поначалу называл нуклеиновой кислотой.
Страница №5
История открытия.
В 1912 г. Леви обнаружил, что в состав нуклеиновых кислот входит углевод пентоза. В начале 20 века был полностью изучен состав всех нуклеиновых кислот, однако вопрос об их строении оставался открытым до 50-х г. 20 века.
История открытия. В 1912 г. Леви обнаружил, что в состав нуклеиновых кислот входит углевод пентоза. В начале 20 века был полностью изучен состав всех нуклеиновых кислот, однако вопрос об их строении оставался открытым до 50-х г. 20 века.
Страница №6
История открытия.
Однако, эта правильная точка зрения просуществовала не долго. При гистохимическом анализе кислот было обнаружено, что гигантские хромосомы не дают похожего аналитического эффекта с нуклеиновыми кислотами.
История открытия. Однако, эта правильная точка зрения просуществовала не долго. При гистохимическом анализе кислот было обнаружено, что гигантские хромосомы не дают похожего аналитического эффекта с нуклеиновыми кислотами.
Страница №7
История открытия.
В 1936 г. советский ученый Белозерский доказал что в проростках конского каштана содержится тимонуклеиновая кислота, которая относится только  к животным кислотам.
История открытия. В 1936 г. советский ученый Белозерский доказал что в проростках конского каштана содержится тимонуклеиновая кислота, которая относится только к животным кислотам.
Страница №8
История открытия.
1953 г. американские биохимики Дж. Уотсон и Ф.Крик установили расположение частей молекулы ДНК
История открытия. 1953 г. американские биохимики Дж. Уотсон и Ф.Крик установили расположение частей молекулы ДНК
Страница №9
Первичная структура нуклеиновых кислот.
Под первичной структурой нуклеиновых кислот понимают порядок, последовательность расположения мононуклеотидов в полинуклеотидной цепи ДНК. Поскольку молекулярная масса нуклеиновых кислот колеблется в широких пределах (от 2•10(4) до 10(10)–10(11), установить первичную структуру ДНК весьма сложно.
Первичная структура нуклеиновых кислот. Под первичной структурой нуклеиновых кислот понимают порядок, последовательность расположения мононуклеотидов в полинуклеотидной цепи ДНК. Поскольку молекулярная масса нуклеиновых кислот колеблется в широких пределах (от 2•10(4) до 10(10)–10(11), установить первичную структуру ДНК весьма сложно.
Страница №10
Информация вложена в изображении слайда
Страница №11
Первичная структура нуклеиновых кислот.
три варианта схемы нуклеотидной последовательности ДНК:
Первичная структура нуклеиновых кислот. три варианта схемы нуклеотидной последовательности ДНК:
Страница №12
Строение ДНК.
ДНК - полимер.
Мономеры - нуклеотиды.
Нуклеотид- химическое соединение остатков трех веществ:
Строение ДНК. ДНК - полимер. Мономеры - нуклеотиды. Нуклеотид- химическое соединение остатков трех веществ:
Страница №13
Конформации компонентов нуклеиновых кислот.
Все 5 гетероциклических оснований, входящих в состав НК, имеют плоскую конформацию. Для остатков рибозы и дезоксирибозы плоская конформация энергетически невыгодна. Среди многочисленных теоритически возможных конформаций этих остатков в полинуклеотидах выделяются только 2:
Конформации компонентов нуклеиновых кислот. Все 5 гетероциклических оснований, входящих в состав НК, имеют плоскую конформацию. Для остатков рибозы и дезоксирибозы плоская конформация энергетически невыгодна. Среди многочисленных теоритически возможных конформаций этих остатков в полинуклеотидах выделяются только 2:
Страница №14
Син- и анти- конформации нуклеозидов
В свободных нуклеозидах и нуклеотидах переход от C2`- эндо- к  C3` - эндо- между син – и анти-конформациями происходит достаточно легко.
Син- и анти- конформации нуклеозидов В свободных нуклеозидах и нуклеотидах переход от C2`- эндо- к C3` - эндо- между син – и анти-конформациями происходит достаточно легко.
Страница №15
Макромолекулярная структура ДНК.
В 1953 г. Дж.Уотсон и Ф.Крик предложили модель структуры ДНК. При постоении стуктуры ученые основывались на 4 группах данных:
Макромолекулярная структура ДНК. В 1953 г. Дж.Уотсон и Ф.Крик предложили модель структуры ДНК. При постоении стуктуры ученые основывались на 4 группах данных:
Страница №16
Макромолекулярная структура ДНК.
- правильная правовинтовая спираль, состоящая из 2 полинуклеатидных цепей, которые закручены друг относительно друга вокруг общей оси.
- цепи имеют антипараллельную ориентацию
- пиримидиновые и пуриновые основания уложены стопкой с интервалом 0,34 нм.
- длина витка спирали – 3,40 нм.
- стабильность цепи за счет водородных связей
- наличие комплиментарных пар – основания,которые образуют пары, в которых они сочетаются водородными связями
Макромолекулярная структура ДНК. - правильная правовинтовая спираль, состоящая из 2 полинуклеатидных цепей, которые закручены друг относительно друга вокруг общей оси. - цепи имеют антипараллельную ориентацию - пиримидиновые и пуриновые основания уложены стопкой с интервалом 0,34 нм. - длина витка спирали – 3,40 нм. - стабильность цепи за счет водородных связей - наличие комплиментарных пар – основания,которые образуют пары, в которых они сочетаются водородными связями
Страница №17
Полиморфизм двойной спирали.
Правые спирали образуют 2 семейства: А-семейство (конформация сахара С3`- эндо-) и В-семейство (конформация сахара С2` -эндо-). Структуры в пределах каждого из семейств в зависимости от условий (концентрации соли, температуры) могут иметь разное число пар, приходящихся на виток спирали.
Полиморфизм двойной спирали. Правые спирали образуют 2 семейства: А-семейство (конформация сахара С3`- эндо-) и В-семейство (конформация сахара С2` -эндо-). Структуры в пределах каждого из семейств в зависимости от условий (концентрации соли, температуры) могут иметь разное число пар, приходящихся на виток спирали.
Страница №18
А – семейство ДНК.
Розалинда Франклин получила эксперементальные свидетельства существования весьма упорядоченной структуры в ориентированных вытягиванием и подсушенных волокнах ДНК. Эта структура получила название А-форма ДНК. Этой форме долгое время не придавали особого значения, т.к. она возникла при малой влажности, т.е. не при физиологических условиях.
А – семейство ДНК. Розалинда Франклин получила эксперементальные свидетельства существования весьма упорядоченной структуры в ориентированных вытягиванием и подсушенных волокнах ДНК. Эта структура получила название А-форма ДНК. Этой форме долгое время не придавали особого значения, т.к. она возникла при малой влажности, т.е. не при физиологических условиях.
Страница №19
А – семейство ДНК.
С3`- эндоконформация сахара приводит к уменьшению расстояния между фосфатными группами и, следовательно, к уменьшению расстояния между нуклеотидными парами вдоль оси спирали. Это ведет к увеличению количества нуклеотидов на виток спирали (11 нуклеотидных остатков).
А – семейство ДНК. С3`- эндоконформация сахара приводит к уменьшению расстояния между фосфатными группами и, следовательно, к уменьшению расстояния между нуклеотидными парами вдоль оси спирали. Это ведет к увеличению количества нуклеотидов на виток спирали (11 нуклеотидных остатков).
Страница №20
А – семейство ДНК.
Пары оснований в А-форме образуют с осью спирали угол около 20 градусов и очень сильно отодвинуты от оси спирали к переферии молекулы: сдвиг достигает 0,4 – 0,5 нм, т.е. почти половину радиуса.
Участвует в транскрипции и передаче информации от ДНК к РНК.
А – семейство ДНК. Пары оснований в А-форме образуют с осью спирали угол около 20 градусов и очень сильно отодвинуты от оси спирали к переферии молекулы: сдвиг достигает 0,4 – 0,5 нм, т.е. почти половину радиуса. Участвует в транскрипции и передаче информации от ДНК к РНК.
Страница №21
А – семейство ДНК.
А – семейство ДНК.
Страница №22
В – семейство ДНК.
Для этого семейства характерно структурное разнообразие. ДНК со случайными последовательностями могут находиться в В-,С-,D- и других конформационных состояниях. На структуру ДНК влияют тип и концентрация катионов, а также температура. 
На виток приходится 10 пар нуклеотидов.
Участвует в репликативных процессах.
С-форма в хранении информации.
В – семейство ДНК. Для этого семейства характерно структурное разнообразие. ДНК со случайными последовательностями могут находиться в В-,С-,D- и других конформационных состояниях. На структуру ДНК влияют тип и концентрация катионов, а также температура. На виток приходится 10 пар нуклеотидов. Участвует в репликативных процессах. С-форма в хранении информации.
Страница №23
Z – форма ДНК.
Левоспиральная конформация ДНК. Она была открыта в 1979 г. при исследовании структуры гексануклеотида  d(CG)3. Если полинуклеотид poly(dG-dC) поместить в водный раствор с высокой концентрацией MgCl2, NaCl или спирта, то образуется левая двойная спираль Z-ДНК . Повторяющейся единицей спирали является не пара нуклеотидов, а двойка соседних пар. В каждой из комплементарных нитей Z-ДНК происходит чередование син- и анти-конформаций нуклеотидных звеньев, а в каждой паре оснований одно всегда находится в син-конформации относительно гликозидной связи, другое - в анти-конформации.
Z – форма ДНК. Левоспиральная конформация ДНК. Она была открыта в 1979 г. при исследовании структуры гексануклеотида d(CG)3. Если полинуклеотид poly(dG-dC) поместить в водный раствор с высокой концентрацией MgCl2, NaCl или спирта, то образуется левая двойная спираль Z-ДНК . Повторяющейся единицей спирали является не пара нуклеотидов, а двойка соседних пар. В каждой из комплементарных нитей Z-ДНК происходит чередование син- и анти-конформаций нуклеотидных звеньев, а в каждой паре оснований одно всегда находится в син-конформации относительно гликозидной связи, другое - в анти-конформации.
Страница №24
Взаимодействия между гетероциклическими основаниями в нуклеиновых кислотах.
2 типа взаимодействия между гетероциклическими основаниями нуклеотидных остатков: взаимодействия м/у основаниями в комплиментарных парах и вертикальными межплоскостными взаимодействиями оснований,расположенными друг над другом (стэкинг взаимодействия)
Взаимодействия между гетероциклическими основаниями в нуклеиновых кислотах. 2 типа взаимодействия между гетероциклическими основаниями нуклеотидных остатков: взаимодействия м/у основаниями в комплиментарных парах и вертикальными межплоскостными взаимодействиями оснований,расположенными друг над другом (стэкинг взаимодействия)
Страница №25
Стэкинг – взаимодействия.
 - обусловлены ван-дер-ваальсовыми силами.
Зависят от состава комплиментарных пар и от их последовательности
Стэкинг – взаимодействия. - обусловлены ван-дер-ваальсовыми силами. Зависят от состава комплиментарных пар и от их последовательности