Ньютон и Лейбниц – создатели математического анализа - prezentaciya-na-temu-nyuton-i-lejbnic--sozdateli-matematicheskogo-analiza доклад по теме Математика

Доклад раскрывает тему "Ньютон и Лейбниц – создатели математического анализа - prezentaciya-na-temu-nyuton-i-lejbnic--sozdateli-matematicheskogo-analiza".
Презентация поможет подготовится к предмету Математика, может быть полезна как ученикам и студентам, так и преподавателям.
Материал представлен на 25 страницах, оформлен в виде презентации, доступен для скачивания и просмотра онлайн.

Навигация по документу

Страница №1
Ньютон и Лейбниц – создатели математического анализа
Страница №2
Производная и интеграл
В конце 17 века в Европе образовались две крупные математические школы. Главой одной из них был Готфрид Вильгельм фон Лейбниц. Его ученики и сотрудники – Лопиталь, братья Бернулли, Эйлер жили и творили на континенте. Вторая школа, возглавляемая Исааком Ньютоном, состояла из английских и шотландских ученых. Обе школы создали новые мощные алгоритмы, приведшие по сути к одним и тем же результатам – к созданию дифференциального и интегрального исчисления.
Производная и интеграл В конце 17 века в Европе образовались две крупные математические школы. Главой одной из них был Готфрид Вильгельм фон Лейбниц. Его ученики и сотрудники – Лопиталь, братья Бернулли, Эйлер жили и творили на континенте. Вторая школа, возглавляемая Исааком Ньютоном, состояла из английских и шотландских ученых. Обе школы создали новые мощные алгоритмы, приведшие по сути к одним и тем же результатам – к созданию дифференциального и интегрального исчисления.
Страница №3
Происхождение производной
Ряд задач дифференциального исчисления был решен еще в древности. Такие задачи можно найти у Евклида и у Архимеда, однако основное понятие – понятие производной функции – возникло только в17 веке в связи с необходимостью решить ряд задач из физики, механики и математики, в первую очередь следующих двух: определение скорости прямолинейного неравномерного движения и построения касательной к произвольной плоской кривой.
Первую задачу: о связи скорости и пути прямолинейно и неравномерно движущейся точки впервые решил Ньютон
     
     

   Он пришел к формуле
Происхождение производной Ряд задач дифференциального исчисления был решен еще в древности. Такие задачи можно найти у Евклида и у Архимеда, однако основное понятие – понятие производной функции – возникло только в17 веке в связи с необходимостью решить ряд задач из физики, механики и математики, в первую очередь следующих двух: определение скорости прямолинейного неравномерного движения и построения касательной к произвольной плоской кривой. Первую задачу: о связи скорости и пути прямолинейно и неравномерно движущейся точки впервые решил Ньютон Он пришел к формуле
Страница №4
Происхождение производной
Ньютон пришел к понятию производной, исходя из вопросов механики. Свои результаты в этой области он изложил в трактате «Метод флюксий и бесконечных рядов». Написана работа была в 60-е годы 17 века, однако опубликована после смерти Ньютона. Ньютон не заботился о том, чтобы своевременно знакомить математическую общественность со своими работами. 
Флюксией называлась производная функции – флюэнты.
Флюэнтой таже в дальнейшем называлась первообразная функция.
Происхождение производной Ньютон пришел к понятию производной, исходя из вопросов механики. Свои результаты в этой области он изложил в трактате «Метод флюксий и бесконечных рядов». Написана работа была в 60-е годы 17 века, однако опубликована после смерти Ньютона. Ньютон не заботился о том, чтобы своевременно знакомить математическую общественность со своими работами. Флюксией называлась производная функции – флюэнты. Флюэнтой таже в дальнейшем называлась первообразная функция.
Страница №5
Информация вложена в изображении слайда
Страница №6
Информация вложена в изображении слайда
Страница №7
Информация вложена в изображении слайда
Страница №8
Информация вложена в изображении слайда
Страница №9
Бином Ньютона
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
Бином Ньютона Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
Страница №10
Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль. Однако историки науки обнаружили, что формула была известна ещё в Древнем Китае в XIII веке, а также исламским математикам в XV веке.
Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль. Однако историки науки обнаружили, что формула была известна ещё в Древнем Китае в XIII веке, а также исламским математикам в XV веке.
Исаак Ньютон около 1676 года обобщил формулу для произвольного показателя степени (дробного, отрицательного и др.). Из биномиального разложения Ньютон, а позднее и Эйлер, выводили всю теорию бесконечных рядов.
Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль. Однако историки науки обнаружили, что формула была известна ещё в Древнем Китае в XIII веке, а также исламским математикам в XV веке. Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль. Однако историки науки обнаружили, что формула была известна ещё в Древнем Китае в XIII веке, а также исламским математикам в XV веке. Исаак Ньютон около 1676 года обобщил формулу для произвольного показателя степени (дробного, отрицательного и др.). Из биномиального разложения Ньютон, а позднее и Эйлер, выводили всю теорию бесконечных рядов.
Страница №11
Бином Ньютона в литературе
В художественной литературе «бином Ньютона» появляется в нескольких запоминающихся контекстах, где речь идёт о чём-либо сложном. 
В рассказе А. Конан Дойля «Последнее дело Холмса» Холмс говорит о математике профессоре Мориарти:
«Когда ему исполнился двадцать один год, он написал трактат о биноме Ньютона, завоевавший ему европейскую известность. После этого он получил кафедру математики в одном из наших провинциальных университетов, и, по всей вероятности, его ожидала блестящая будущность»
Знаменита цитата из «Мастера и Маргариты» М. А. Булгакова: «Подумаешь, бином Ньютона!». 
Позже это же выражение упомянуто в фильме «Сталкер» А. А. Тарковского.
             Бином Ньютона упоминается: 
в повести Льва Толстого «Юность» в эпизоде сдачи вступительных экзаменов в университет Николаем Иртеньевым;
в романе Е.И.Замятина «Мы».
в фильме «Расписание на послезавтра»;
Бином Ньютона в литературе В художественной литературе «бином Ньютона» появляется в нескольких запоминающихся контекстах, где речь идёт о чём-либо сложном. В рассказе А. Конан Дойля «Последнее дело Холмса» Холмс говорит о математике профессоре Мориарти: «Когда ему исполнился двадцать один год, он написал трактат о биноме Ньютона, завоевавший ему европейскую известность. После этого он получил кафедру математики в одном из наших провинциальных университетов, и, по всей вероятности, его ожидала блестящая будущность» Знаменита цитата из «Мастера и Маргариты» М. А. Булгакова: «Подумаешь, бином Ньютона!». Позже это же выражение упомянуто в фильме «Сталкер» А. А. Тарковского. Бином Ньютона упоминается: в повести Льва Толстого «Юность» в эпизоде сдачи вступительных экзаменов в университет Николаем Иртеньевым; в романе Е.И.Замятина «Мы». в фильме «Расписание на послезавтра»;
Страница №12
Происхождение производной
В подходе Лейбница к математическому анализу были некоторые особенности. Лейбниц мыслил высший анализ не кинематически, как Ньютон, а алгебраически. Он шел к своему открытию от анализа бесконечно малых величин и теории бесконечных рядов.
В 1675 году Лейбниц завершает свой вариант математического анализа, тщательно продумывает его символику и терминологию, отражающую существо дела. Почти все его нововведения укоренились в науке и только термин «интеграл» ввёл Якоб Бернулли (1690), сам Лейбниц вначале называл его просто суммой.
Происхождение производной В подходе Лейбница к математическому анализу были некоторые особенности. Лейбниц мыслил высший анализ не кинематически, как Ньютон, а алгебраически. Он шел к своему открытию от анализа бесконечно малых величин и теории бесконечных рядов. В 1675 году Лейбниц завершает свой вариант математического анализа, тщательно продумывает его символику и терминологию, отражающую существо дела. Почти все его нововведения укоренились в науке и только термин «интеграл» ввёл Якоб Бернулли (1690), сам Лейбниц вначале называл его просто суммой.
Страница №13
Происхождение производной
По мере развития анализа выяснилось, что символика Лейбница, в отличие от ньютоновской, отлично подходит для обозначения многократного дифференцирования, частных производных и т. д. На пользу школе Лейбница шла и его открытость, массовая популяризация новых идей, что Ньютон делал крайне неохотно.
Происхождение производной По мере развития анализа выяснилось, что символика Лейбница, в отличие от ньютоновской, отлично подходит для обозначения многократного дифференцирования, частных производных и т. д. На пользу школе Лейбница шла и его открытость, массовая популяризация новых идей, что Ньютон делал крайне неохотно.
Страница №14
Информация вложена в изображении слайда
Страница №15
Кто автор производной?
Ньютон  создал свой метод, опираясь на прежние открытия, сделанные им в области анализа, но в самом главном вопросе он обратился к помощи геометрии и механики. Когда именно Ньютон открыл свой новый метод, в точности неизвестно. По тесной связи этого способа с теорией тяготения следует думать. что он был выработан Ньютоном между 1666 и 1669 годами.
Лейбниц обнародовав главные результаты своего открытия в 1684, опережая Исаака Ньютона, который еще раньше Лейбница пришел к сходным результатам, но не публиковал их.
 Впоследствии на эту тему возник многолетний спор о приоритете открытия дифференциального исчисления.
Кто автор производной? Ньютон создал свой метод, опираясь на прежние открытия, сделанные им в области анализа, но в самом главном вопросе он обратился к помощи геометрии и механики. Когда именно Ньютон открыл свой новый метод, в точности неизвестно. По тесной связи этого способа с теорией тяготения следует думать. что он был выработан Ньютоном между 1666 и 1669 годами. Лейбниц обнародовав главные результаты своего открытия в 1684, опережая Исаака Ньютона, который еще раньше Лейбница пришел к сходным результатам, но не публиковал их. Впоследствии на эту тему возник многолетний спор о приоритете открытия дифференциального исчисления.
Страница №16
Формула Ньютона-Лейбница
Формула Ньютона-Лейбница
Страница №17
Информация вложена в изображении слайда
Страница №18
Информация вложена в изображении слайда
Страница №19
Информация вложена в изображении слайда
Страница №20
Информация вложена в изображении слайда
Страница №21
Информация вложена в изображении слайда
Страница №22
Информация вложена в изображении слайда
Страница №23
Использованные ресурсы:
Использованные ресурсы:
Страница №24
Использованные ресурсы:
http://www.alib.ru/bs.php4?uid=1129dbb67b5eacfb00831c58dd512a88c759
http://www.dom-knigi.ru/book.asp?Art=316871&CatalogID=158
http://www.athens.kiev.ua/lejbnic/
http://www.100book.ru/predel_funkcij_formuly_nyutona-lejbnica_i_tejlora_b382187.html 
http://tvsh2004.narod.ru/ma_12-0.htm
Мордкович А.П. П.В.Алгебра и начала анализа (профильный уровень) 
10 класс, М., «Мнемозина», 2006.
Использованные ресурсы: http://www.alib.ru/bs.php4?uid=1129dbb67b5eacfb00831c58dd512a88c759 http://www.dom-knigi.ru/book.asp?Art=316871&CatalogID=158 http://www.athens.kiev.ua/lejbnic/ http://www.100book.ru/predel_funkcij_formuly_nyutona-lejbnica_i_tejlora_b382187.html http://tvsh2004.narod.ru/ma_12-0.htm Мордкович А.П. П.В.Алгебра и начала анализа (профильный уровень) 10 класс, М., «Мнемозина», 2006.
Страница №25
Информация вложена в изображении слайда