Презентация Усеченный конус доклад по теме Математика

Вашему вниманию предлагается доклад и презентация по теме Презентация Усеченный конус. Данны материал, представленный на 35 страницах, поможет подготовится к уроку Математика. Он будет полезен как ученикам и студентам, так и преподавателям школ и вузов. Вы можете ознакомиться и скачать этот и любой другой доклад у нас на сайте. Все материалы абсолютно бесплатны и доступны. Ссылку на скачивание Вы можете найти вконце страницы. Если материал Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте сайт в закладки в своем браузере.
Страница #1
Усеченный конус. МОУ СОШ №256 г.Фокино
Страница #2
Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.
   Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.
Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса. Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.
Страница #3
Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями.
   Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями.
Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями. Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями.
Страница #4
Пусть в конусе, высота которого известна, проведено сечение, находящееся на расстоянии три от вершины. Чему равна образующая получившегося усеченного конуса, если известна образующая полного конуса?
   Пусть в конусе, высота которого известна, проведено сечение, находящееся на расстоянии три от вершины. Чему равна образующая получившегося усеченного конуса, если известна образующая полного конуса?
Пусть в конусе, высота которого известна, проведено сечение, находящееся на расстоянии три от вершины. Чему равна образующая получившегося усеченного конуса, если известна образующая полного конуса? Пусть в конусе, высота которого известна, проведено сечение, находящееся на расстоянии три от вершины. Чему равна образующая получившегося усеченного конуса, если известна образующая полного конуса?
Страница #5
Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.
   Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.
Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию. Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.
Страница #6
Пусть дан усеченный конус, радиусы оснований и высота которого известны. Найдите образующую усеченного конуса.
   Пусть дан усеченный конус, радиусы оснований и высота которого известны. Найдите образующую усеченного конуса.
Пусть дан усеченный конус, радиусы оснований и высота которого известны. Найдите образующую усеченного конуса. Пусть дан усеченный конус, радиусы оснований и высота которого известны. Найдите образующую усеченного конуса.
Страница #7
Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией.
   Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией.
Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией. Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией.
Страница #8
Найдите площадь осевого сечения, если известны радиус нижнего основания, высота и образующая.
   Найдите площадь осевого сечения, если известны радиус нижнего основания, высота и образующая.
Найдите площадь осевого сечения, если известны радиус нижнего основания, высота и образующая. Найдите площадь осевого сечения, если известны радиус нижнего основания, высота и образующая.
Страница #9
Боковая поверхность усеченного конуса. Площадь боковой поверхности 
усеченного конуса.
   Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.
Боковая поверхность усеченного конуса. Площадь боковой поверхности усеченного конуса. Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.
Страница #10
Доказательство:
   Боковую поверхность усеченного конуса будем понимать как предел, к которому стремится боковая поверхность вписанной в этот конус правильной усеченной пирамиды, когда число боковых граней неограниченно увеличивается.
Доказательство: Боковую поверхность усеченного конуса будем понимать как предел, к которому стремится боковая поверхность вписанной в этот конус правильной усеченной пирамиды, когда число боковых граней неограниченно увеличивается.
Страница #11
Доказательство:
    Впишем в конус правильную пирамиду. Ее боковая поверхность состоит из трапеций.
Доказательство: Впишем в конус правильную пирамиду. Ее боковая поверхность состоит из трапеций.
Страница #12
Площадь боковой поверхности усеченного конуса можно рассматривать как разность между площадями боковых поверхностей двух конусов. Поэтому развертка усеченного конуса – это часть круглого кольца.
   Площадь боковой поверхности усеченного конуса можно рассматривать как разность между площадями боковых поверхностей двух конусов. Поэтому развертка усеченного конуса – это часть круглого кольца.
Площадь боковой поверхности усеченного конуса можно рассматривать как разность между площадями боковых поверхностей двух конусов. Поэтому развертка усеченного конуса – это часть круглого кольца. Площадь боковой поверхности усеченного конуса можно рассматривать как разность между площадями боковых поверхностей двух конусов. Поэтому развертка усеченного конуса – это часть круглого кольца.
Страница #13
Усеченный конус получен от вращения прямоугольной трапеции вокруг боковой стороны, перпендикулярной основаниям, Найдите площадь боковой поверхности усеченного конуса, если известны основания и боковая сторона трапеции.
   Усеченный конус получен от вращения прямоугольной трапеции вокруг боковой стороны, перпендикулярной основаниям, Найдите площадь боковой поверхности усеченного конуса, если известны основания и боковая сторона трапеции.
Усеченный конус получен от вращения прямоугольной трапеции вокруг боковой стороны, перпендикулярной основаниям, Найдите площадь боковой поверхности усеченного конуса, если известны основания и боковая сторона трапеции. Усеченный конус получен от вращения прямоугольной трапеции вокруг боковой стороны, перпендикулярной основаниям, Найдите площадь боковой поверхности усеченного конуса, если известны основания и боковая сторона трапеции.
Страница #14
Задача.
Радиус меньшего основания усеченного конуса равен 5, высота равна 6, а расстояние от центра меньшего основания до окружности большего основания равно 10. Найдите площадь боковых поверхностей усеченного и полного конусов.
Задача. Радиус меньшего основания усеченного конуса равен 5, высота равна 6, а расстояние от центра меньшего основания до окружности большего основания равно 10. Найдите площадь боковых поверхностей усеченного и полного конусов.
Страница #15
Достроим усеченный конус до полного и проведем осевое сечение.
   Достроим усеченный конус до полного и проведем осевое сечение.
Достроим усеченный конус до полного и проведем осевое сечение. Достроим усеченный конус до полного и проведем осевое сечение.
Страница #16
1) Вычислим радиус большего основания.
1) Вычислим радиус большего основания.
1) Вычислим радиус большего основания. 1) Вычислим радиус большего основания.
Страница #17
2) Найдем боковую сторону трапеции –образующую усеченного конуса.
   2) Найдем боковую сторону трапеции –образующую усеченного конуса.
2) Найдем боковую сторону трапеции –образующую усеченного конуса. 2) Найдем боковую сторону трапеции –образующую усеченного конуса.
Страница #18
3) Используя подобие треугольников, найдем образующую полного конуса.
   3) Используя подобие треугольников, найдем образующую полного конуса.
3) Используя подобие треугольников, найдем образующую полного конуса. 3) Используя подобие треугольников, найдем образующую полного конуса.
Страница #19
4) Подставим найденные значения в формулы для площадей боковой поверхности полного и усеченного конусов.
   4) Подставим найденные значения в формулы для площадей боковой поверхности полного и усеченного конусов.
4) Подставим найденные значения в формулы для площадей боковой поверхности полного и усеченного конусов. 4) Подставим найденные значения в формулы для площадей боковой поверхности полного и усеченного конусов.
Страница #20
Формула объема усеченного конуса.
Объем усеченного конуса равен сумме объемов трех конусов, имеющих одинаковую высоту с усеченным конусом, а основаниями: один – нижнее основание этого конуса, другой – верхнее, а третий – круг, радиус которого есть среднее геометрическое между радиусами верхнего и нижнего оснований.
Формула объема усеченного конуса. Объем усеченного конуса равен сумме объемов трех конусов, имеющих одинаковую высоту с усеченным конусом, а основаниями: один – нижнее основание этого конуса, другой – верхнее, а третий – круг, радиус которого есть среднее геометрическое между радиусами верхнего и нижнего оснований.
Страница #21
Доказательство:
   Поместим на верхнем основании усеченного конуса малый конус, дополняющий его до полного и рассмотрим объем его как разность объемов двух конусов.
Доказательство: Поместим на верхнем основании усеченного конуса малый конус, дополняющий его до полного и рассмотрим объем его как разность объемов двух конусов.
Страница #22
Вычислим высоту полного конуса из подобия треугольников.
   Вычислим высоту полного конуса из подобия треугольников.
Вычислим высоту полного конуса из подобия треугольников. Вычислим высоту полного конуса из подобия треугольников.
Страница #23
Объемы полного и дополнительного конусов относятся как кубы радиусов оснований.
   Объемы полного и дополнительного конусов относятся как кубы радиусов оснований.
Объемы полного и дополнительного конусов относятся как кубы радиусов оснований. Объемы полного и дополнительного конусов относятся как кубы радиусов оснований.
Страница #24
Вычтем из объема большого конуса объем малого конуса.
   Вычтем из объема большого конуса объем малого конуса.
Вычтем из объема большого конуса объем малого конуса. Вычтем из объема большого конуса объем малого конуса.
Страница #25
Найдите объем усеченного конуса, если известны его высота и радиусы оснований.
   Найдите объем усеченного конуса, если известны его высота и радиусы оснований.
Найдите объем усеченного конуса, если известны его высота и радиусы оснований. Найдите объем усеченного конуса, если известны его высота и радиусы оснований.
Страница #26
Подобные цилиндры и конусы.
Подобные цилиндры или конусы можно рассматривать как тела, полученные от вращения подобных прямоугольников или прямоугольных треугольников.
Подобные цилиндры и конусы. Подобные цилиндры или конусы можно рассматривать как тела, полученные от вращения подобных прямоугольников или прямоугольных треугольников.
Страница #27
Сечение, параллельное основанию конуса, отсекает от него малый конус, подобный большому.
   Сечение, параллельное основанию конуса, отсекает от него малый конус, подобный большому.
Сечение, параллельное основанию конуса, отсекает от него малый конус, подобный большому. Сечение, параллельное основанию конуса, отсекает от него малый конус, подобный большому.
Страница #28
В цилиндре проведено сечение, параллельное основанию. Будет ли малый цилиндр, который отсекается этим сечением, подобен большому?
   В цилиндре проведено сечение, параллельное основанию. Будет ли малый цилиндр, который отсекается этим сечением, подобен большому?
В цилиндре проведено сечение, параллельное основанию. Будет ли малый цилиндр, который отсекается этим сечением, подобен большому? В цилиндре проведено сечение, параллельное основанию. Будет ли малый цилиндр, который отсекается этим сечением, подобен большому?
Страница #29
Площади боковых поверхностей подобных цилиндров и конусов относятся как квадраты радиусов или высот, а объемы – как кубы радиусов или высот.
   Площади боковых поверхностей подобных цилиндров и конусов относятся как квадраты радиусов или высот, а объемы – как кубы радиусов или высот.
Площади боковых поверхностей подобных цилиндров и конусов относятся как квадраты радиусов или высот, а объемы – как кубы радиусов или высот. Площади боковых поверхностей подобных цилиндров и конусов относятся как квадраты радиусов или высот, а объемы – как кубы радиусов или высот.
Страница #30
В конусе, высота которого известна, проведено сечение, параллельное основанию. Известно также соотношение объемов малого и большого конусов. На каком расстоянии от основания находится сечение?
   В конусе, высота которого известна, проведено сечение, параллельное основанию. Известно также соотношение объемов малого и большого конусов. На каком расстоянии от основания находится сечение?
В конусе, высота которого известна, проведено сечение, параллельное основанию. Известно также соотношение объемов малого и большого конусов. На каком расстоянии от основания находится сечение? В конусе, высота которого известна, проведено сечение, параллельное основанию. Известно также соотношение объемов малого и большого конусов. На каком расстоянии от основания находится сечение?
Страница #31
Радиусы оснований усеченного конуса относятся как 2:3. Высота конуса разделена на три равные части, и через точки деления проведены плоскости, параллельные основаниям. Найти, в каком отношении разделился объем усеченного конуса.
  Радиусы оснований усеченного конуса относятся как 2:3. Высота конуса разделена на три равные части, и через точки деления проведены плоскости, параллельные основаниям. Найти, в каком отношении разделился объем усеченного конуса.
Радиусы оснований усеченного конуса относятся как 2:3. Высота конуса разделена на три равные части, и через точки деления проведены плоскости, параллельные основаниям. Найти, в каком отношении разделился объем усеченного конуса. Радиусы оснований усеченного конуса относятся как 2:3. Высота конуса разделена на три равные части, и через точки деления проведены плоскости, параллельные основаниям. Найти, в каком отношении разделился объем усеченного конуса.
Страница #32
Зная, что радиусы оснований конуса относятся как два к трем, обозначим радиусы как 2а и 3а и рассмотрим осевое сечение конуса.
   Зная, что радиусы оснований конуса относятся как два к трем, обозначим радиусы как 2а и 3а и рассмотрим осевое сечение конуса.
Зная, что радиусы оснований конуса относятся как два к трем, обозначим радиусы как 2а и 3а и рассмотрим осевое сечение конуса. Зная, что радиусы оснований конуса относятся как два к трем, обозначим радиусы как 2а и 3а и рассмотрим осевое сечение конуса.
Страница #33
1) Используя подобие, найдем радиусы проведенных сечений.
  1) Используя подобие, найдем радиусы проведенных сечений.
1) Используя подобие, найдем радиусы проведенных сечений. 1) Используя подобие, найдем радиусы проведенных сечений.
Страница #34
2) Достроив усеченный конус до полного, найдем, какую часть от полного конуса составляют меньшие конусы.
   2) Достроив усеченный конус до полного, найдем, какую часть от полного конуса составляют меньшие конусы.
2) Достроив усеченный конус до полного, найдем, какую часть от полного конуса составляют меньшие конусы. 2) Достроив усеченный конус до полного, найдем, какую часть от полного конуса составляют меньшие конусы.
Страница #35
3) Определим, какую часть от объема полного конуса составляют усеченные конусы, расположенные между соседними сечениями и найдем отношение объемов этих конусов.
   3) Определим, какую часть от объема полного конуса составляют усеченные конусы, расположенные между соседними сечениями и найдем отношение объемов этих конусов.
3) Определим, какую часть от объема полного конуса составляют усеченные конусы, расположенные между соседними сечениями и найдем отношение объемов этих конусов. 3) Определим, какую часть от объема полного конуса составляют усеченные конусы, расположенные между соседними сечениями и найдем отношение объемов этих конусов.

Готовые презентации по математике используют в качестве наглядных пособий, которые позволяют учителю или родителю продемонстрировать изучаемую тему из учебника с помощью слайдов и таблиц, показать примеры по решению задач и уравнений, а также проверить знания. В данном разделе сайта можно найти и скачать множество готовых презентаций по математике для учащихся 1,2,3,4,5,6 класса, а также презентации по высшей математике для студентов ВУЗов.