Дифуры 1го порядка презентация - доклад по теме Алгебра

  • ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1-ГО ПОРЯДКА
ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО
  • Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать.
Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать.
  • Встречаются 3 типа дифференциальных уравнений первого порядка:
Уравнения с разделяющимися переменными,
Однородные уравнения,
Линейные неоднородные уравнения,
  • Сначала вспомним обычные уравнения
Они содержат переменные и числа
  • Что значит решить обычное уравнение?
Это значит, найти множество чисел, которые удовлетворяют данному уравнению
  • Диффуры устроены примерно так же
Дифференциальное уравнение первого порядка в общем случае содержит: 
независимую переменную
зависимую переменную    (функцию)
первую производную функции
  • Что значит решить дифференциальное уравнение?
В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная 	   , и не было производных высших порядков – 	,        и т.д.
  • Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид 		       (     – произвольная постоянная), который называется общим решением дифференциального уравнения.
Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид 		       (     – произвольная постоянная), который называется общим решением дифференциального уравнения.
  • Пример 
Решить дифференциальное уравнение 
Полный боекомплект. С чего начать решение? 
В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение	     , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно!
Итак:
  • На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п. Дифференциалы      и       – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции: 
На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п. Дифференциалы      и       – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:
  • Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».
 Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».
Следующий этап – интегрирование дифференциального уравнения. Всё просто, навешиваем интегралы на обе части:
  • Разумеется, интегралы нужно взять. В данном случае они табличные:
  • Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть.
Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть.
Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде.  Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения. То есть,		  – это общий интеграл.
Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение.
Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) тоже целесообразно записать под логарифмом.
  • То есть, ВМЕСТО записи 
То есть, ВМЕСТО записи 
	обычно пишут: 
Используем свойство логарифмов и получаем:
Теперь логарифмы и модули можно убрать:
Ответ: общее решение:
  • Спасибо за внимание
Выполнил: ст.гр. СО-11 Макаренко Н.Н.
Если вам понравился материл вы можете разместить его у вас на сайте.
Открыть доклад
Скачать
Вашему вниманию предлагается презентация по теме Дифуры 1го порядка. Данны материал содержит 15 слайдов. Вы можете использовать его для подготовки к уроку Алгебра. Он будет полезен как ученикам и студентам, так и преподавателям школ и вузов. Вы можете просмотреть презентацию прямо у нас на сайте или скачать к себе. Все материалы абсолютно бесплатны. Если материал Вам понравились и был полезен – поделитесь им с друзьями с помощью социальных кнопок и добавьте сайт в закладки в своем браузере.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1-ГО ПОРЯДКА ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО

Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать.

Встречаются 3 типа дифференциальных уравнений первого порядка: Уравнения с разделяющимися переменными, Однородные уравнения, Линейные неоднородные уравнения,

Сначала вспомним обычные уравнения Они содержат переменные и числа

Что значит решить обычное уравнение? Это значит, найти множество чисел, которые удовлетворяют данному уравнению

Диффуры устроены примерно так же Дифференциальное уравнение первого порядка в общем случае содержит: независимую переменную зависимую переменную (функцию) первую производную функции

Что значит решить дифференциальное уравнение? В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная , и не было производных высших порядков – ,  и т.д.

Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид ( – произвольная постоянная), который называется общим решением дифференциального уравнения. Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид ( – произвольная постоянная), который называется общим решением дифференциального уравнения.

Пример Решить дифференциальное уравнение Полный боекомплект. С чего начать решение? В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно! Итак:

На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п. Дифференциалы  и  – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции: На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п. Дифференциалы  и  – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы». Переменные разделены. В левой части – только «игреки», в правой части – только «иксы». Следующий этап – интегрирование дифференциального уравнения. Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть. Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть. Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде.  Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения. То есть,  – это общий интеграл. Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение. Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) тоже целесообразно записать под логарифмом.

То есть, ВМЕСТО записи То есть, ВМЕСТО записи обычно пишут: Используем свойство логарифмов и получаем: Теперь логарифмы и модули можно убрать: Ответ: общее решение:

Спасибо за внимание Выполнил: ст.гр. СО-11 Макаренко Н.Н.

Работа может использоваться для проведения уроков и докладов по предмету "Алгебра"

Готовые презентации по алгебре можно использовать как материал для наглядного изучения новой темы на уроке алгебры: учитель демонстрирует изучаемую тему из учебника с помощью слайдов и таблиц, показывает примеры по решению задач и уравнений, а также проверяет знания учеников с помощью ответов на вопросы. В данном разделе Вы можете скачать готовые презентации по алгебре и началу анализа для 6,7,8,9,10,11 класса.

Оставьте свой комментарий