Дифуры 1го порядка

  • ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1-ГО ПОРЯДКА
ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО
  • Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать.
Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать.
  • Встречаются 3 типа дифференциальных уравнений первого порядка:
Уравнения с разделяющимися переменными,
Однородные уравнения,
Линейные неоднородные уравнения,
  • Сначала вспомним обычные уравнения
Они содержат переменные и числа
  • Что значит решить обычное уравнение?
Это значит, найти множество чисел, которые удовлетворяют данному уравнению
  • Диффуры устроены примерно так же
Дифференциальное уравнение первого порядка в общем случае содержит: 
независимую переменную
зависимую переменную    (функцию)
первую производную функции
  • Что значит решить дифференциальное уравнение?
В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная 	   , и не было производных высших порядков – 	,        и т.д.
  • Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид 		       (     – произвольная постоянная), который называется общим решением дифференциального уравнения.
Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид 		       (     – произвольная постоянная), который называется общим решением дифференциального уравнения.
  • Пример 
Решить дифференциальное уравнение 
Полный боекомплект. С чего начать решение? 
В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение	     , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно!
Итак:
  • На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п. Дифференциалы      и       – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции: 
На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п. Дифференциалы      и       – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:
  • Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».
 Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».
Следующий этап – интегрирование дифференциального уравнения. Всё просто, навешиваем интегралы на обе части:
  • Разумеется, интегралы нужно взять. В данном случае они табличные:
  • Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть.
Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть.
Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде.  Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения. То есть,		  – это общий интеграл.
Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение.
Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) тоже целесообразно записать под логарифмом.
  • То есть, ВМЕСТО записи 
То есть, ВМЕСТО записи 
	обычно пишут: 
Используем свойство логарифмов и получаем:
Теперь логарифмы и модули можно убрать:
Ответ: общее решение:
  • Спасибо за внимание
Выполнил: ст.гр. СО-11 Макаренко Н.Н.
If you like the material you can post it on your site.
Watch Lecture
Download
Вашему вниманию предлагается презентация по теме Дифуры 1го порядка. Данны материал содержит 15 слайдов. Вы можете использовать его для подготовки к уроку Algebra. Он будет полезен как ученикам и студентам, так и преподавателям школ и вузов. Вы можете просмотреть презентацию прямо у нас на сайте или скачать к себе. Все материалы абсолютно бесплатны. Если материал Вам понравились и был полезен – поделитесь им с друзьями с помощью социальных кнопок и добавьте сайт в закладки в своем браузере.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1-ГО ПОРЯДКА ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО

Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать.

Встречаются 3 типа дифференциальных уравнений первого порядка: Уравнения с разделяющимися переменными, Однородные уравнения, Линейные неоднородные уравнения,

Сначала вспомним обычные уравнения Они содержат переменные и числа

Что значит решить обычное уравнение? Это значит, найти множество чисел, которые удовлетворяют данному уравнению

Диффуры устроены примерно так же Дифференциальное уравнение первого порядка в общем случае содержит: независимую переменную зависимую переменную (функцию) первую производную функции

Что значит решить дифференциальное уравнение? В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная , и не было производных высших порядков – ,  и т.д.

Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид ( – произвольная постоянная), который называется общим решением дифференциального уравнения. Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид ( – произвольная постоянная), который называется общим решением дифференциального уравнения.

Пример Решить дифференциальное уравнение Полный боекомплект. С чего начать решение? В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно! Итак:

На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п. Дифференциалы  и  – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции: На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п. Дифференциалы  и  – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы». Переменные разделены. В левой части – только «игреки», в правой части – только «иксы». Следующий этап – интегрирование дифференциального уравнения. Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть. Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть. Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде.  Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения. То есть,  – это общий интеграл. Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение. Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) тоже целесообразно записать под логарифмом.

То есть, ВМЕСТО записи То есть, ВМЕСТО записи обычно пишут: Используем свойство логарифмов и получаем: Теперь логарифмы и модули можно убрать: Ответ: общее решение:

Спасибо за внимание Выполнил: ст.гр. СО-11 Макаренко Н.Н.

Работа может использоваться для проведения уроков и докладов по предмету "Algebra"

Оставьте свой комментарий